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The canonical classical extension of quantum mechanics studied recently by E. 
G. Beltrametti and S. Bugajski opens a new way toward generalizing the standard 
probability theory. The emerging fuzzy probability theory is able to give a full 
account of both classical and quantal probabilities, and--like the standard 
probability theory--could be of universal use, far outside the borders of physics. 
A specific feature of this hypothetical theory of probability is its mixed, 
classical-quanta character: classical as well as quantal random variables are 
described on an equal footing in a unified framework. Some new features of the 
fuzzy probability theory are shown on simple examples. 

1. THE RATIONAL VERSUS THE INTUITIVE 

The carefully prepared prospectus of this conference spotlights a con- 
frontation between the conscious ordering of the physical and social world, 
symbolized by "Einstein," and the imaginary world of "Magritte." This deep 
opposition, which dates back to the ancients, has many faces; its epistemologi- 
cal aspect can be verbalized as the opposition between "rational" and "intu- 
itive" ways of cognition. Needless to say, the former is the paradigm for 
science, whereas the latter is typical for everyday life as well as for the fine 
arts, literature, and the humanities. Rather than attempt to discuss this topic 
in great detail, I stress some characteristic features of these competing ways 
of acquiring knowledge. 

Rationalism is based on a well-defined, though oversimplified, model 
of reality. The rational universe is categorical, fragmented, and deterministic: 
things can be objectively classified as belonging or not to a given category, 
the same cause in the same circumstances produces the same effect, etc. The 
basic features of the rational model are imitated by the laws of classical logic. 
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The intuitive approach puts into question the axioms of the rationalist 
myth. The intuitive view of the world allows it to be fuzzy, holistic, and 
indeterministic: properties are usually subjective and often not sharp, free 
will is acausal, etc. No wonder that irrational cognition is also "illogical," 
as it does not respect the rules of classical logic. Note that, contrary to the 
rationalist ideal, there is no borderline between rational and intuitive cogni- 
tions. Moreover, it seems that the latter in a sense "contains" the former: a 
person who appreciates intuition can nevertheless make use of the rational 
rules of thinking. 

It is ironic that rational science proves in a rational way that nature is 
"irrational." I will show below that the probabilistic background of quantum 
mechanics is formed by what I call fuzzy probability theory, which--contrary 
to the standard (Frrchet-Kolmogorov) probability theory--goes well beyond 
rational limitations, but nevertheless contains the standard, rationalism-based, 
theory. Perhaps fuzzy probability theory with its rational description of irratio- 
nality would be one of places where "Einstein" meets "Magritte." 

2. QUANTUM MECHANICS SUGGESTS FUZZY 
PROBABILITY THEORY 

Approaching the main topic of this essay, we observe first that the 
standard probability theory is designed according to the rules of rationalism. 
A standard random variable (a standard property) attaches a well-defined 
value to any elementary event, hence the standard probability theory is a 
theory of sharp (categorical) properties. A probability measure over the collec- 
tion of possible elementary events merely describes our incomplete knowledge 
of the actual state of the universe of discourse. The incompleteness of the 
initial information leads naturally to an uncertainty about the outcome of a 
test of a random variable in such a state; this uncertainty is described again 
by a probability distribution over the set of possible values the random 
variable can take on. Thus the distribution of a standard random variable is 
still a probability distribution of a sharply defined, categorical property. 

A different picture arises if we inspect the probabilistic structure of 
quantum mechanics. Let ~ denote a complex separable Hilbert space, the 
stage for all performances of quantum mechanics. The quantum mechanical 
pure states are represented by one-dimensional orthogonal projections on ~ ;  
the set of all of them will be denoted 12~e (the measurable structure of gl~ 
we need for defining probability measures on it is induced by the weak 
topology of the Banach space of trace-class operators on ~).  Let P be a self- 
adjoint operator on ~ ;  we assume that it represents an observable physical 
quantity ("is an observable" according to quantum mechanical usage). It is 
convenient to understand here the spectral resolution of P as a map/~F which 
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to any (Borel-measurable) subset of the real line R 1 attaches an appropriate 
projection operator on Ye (see, e.g., Reed and Simon, 1972). The map ~F 
(called the spectral measure associated with F)  is known to produce at any 
point to E 12~ a probability measure F(to) on R ~ according to 

F(co)(X) := Tr(P,~EF(X)) (1) 

where X E ~ ( R  l) is a measurable subset of  the real line, Ee(X) is the 
projection operator attached to X by the spectral resolution of F, and P~, is 
the one-dimensional projection operator representing the pure state to. It is 
well known that the measure F(to) rarely is concentrated at a point (i.e., 
rarely equals the Dirac measure 8x for some h E R I, called then an eigenvalue 
of P). 

The commonly acceptcd statistical interpretation of quantum mechanics 
connects thc measurc F(co) directly to experiments: it should describe thc 
statistical scatter of values of the physical quantity represented by P which 
results from a measurement of this quantity on an ensemble of objccts prepared 
to be in the state ~. The same meaning is commonly attached to a distribution 
of a random variable provided by standard probability theory. This suggests 
that quantum mechanical observables should be seen as quantum counterparts 
of standard random variables. Assuming now that quantum pure states corre- 
spond to elementary cvents, we obtain a scheme resembling standard probabil- 
ity theory. There is, however, a crucial difference: quantum mechanical 
observables, contrary to random variables of standard probability theory, 
generate at purc states probability distributions (nontrivial in gcneral) rather 
than well-defined values. 

In this way we come to a natural generalization of the standard concept 
of random variable: 

(Generalized) random variables are measure-valued functions on the 
space of elementary events. 

The standard random variables would fit this preliminary definition if 
only we agree to consider the sharp values they take on as Dirac measures. 
Let me introduce some notation: given a set O of elementary events, a random 
variable (in the generalized sense) on 1~ having outcomes in an outcome 
space ~ is represented by a function F: ~ ~ Ml (2),  where M~-(~) denotes 
the convex set of probability measures on ~ .  Clearly, ~ has to be equipped 
with a measurable structure, so we should in fact speak about a measurable 
space (~,  ~ (~ ) ) .  The standard random variables are then identified as those 
ranging over the set {8~1~ E ~} C M~(~,) of Dirac measures on 1~. 

It is evident that a nonstandard random variable shows a kind of inherent 
uncertainty, as it attaches nontrivial probability distributions on ~ to (some) 
elementary events. In a generic case this feature cannot be interpreted as a 
result of our incomplete knowledge of the actual situation (see below, Section 
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6). A theory incorporating such random variables describes a universe which 
does not fit the rational ideal-- i t  is not categorical and not deterministic. (It 
seems to be holistic, too.) This is exactly the case of quantum mechanics, 
but it is not the case of standard probability theory. One can easily guess 
that the new concept of random variable put into the elaborate structure of 
the latter would force its fundamental reconstruction. The emerging theory- 
to-be is exactly what we call fuzzy probability theory. The remaining part 
of this essay is the first guided sightseeing tour of some accessible regions 
of this unexplored and exotic land. 

3. FUZZY EVENTS 

Let ( ~ ,  ~ ( ~ ) )  denotes a measurable space, elements of  l-I representing 
elementary events (in physics: pure states). Consider a random variable F: 
f l  ---> M~-(__,). As F(co) is a measure (at least trivial) on E,  the random variable 
defines a specific function K F on the Cartesian product l-I × ~ ( E )  taking 
values in the unit interval [0, 1]: 

KF(to, X) := F(to)(X) (2) 

If we fix to ~ l'l and let X vary over the o'-algebra ~(_~) of measurable 
subsets of E, we recover the measure F(to). If we fix X e ~ ( E )  and let to 
vary over l'l, we get a real-valued function on elementary events which will 
be called the effect of F on X. 2 Thus KF(to, .) = F(to), while the effect KF( ., 
X) will be denoted Er(X). 

Incomplete information about the actual state of affairs is to be described, 
as in the standard theory, by a probability measure on f~. Random variables 
should be meaningful also in such cases; it is natural to assume that the 

+ 
random variable F: l l  ---> M1 (=)  generates at a probability measure Ix on 
the distribution, denoted ArIx, on E according to the formula 

artx(X) := In F(to)(X) Ix(dto) = I K~(to, X) Ix(dto) (3) 

where X E ~ ( E ) .  The integral is well defined only if the effect EF(X) is a 
measurable function on f l .  This is what we have to assume to obtain the 
complete definition of random variable. Thus: 

+ A function F: f l  ---> Mt (=) is a random variable on t~ if and only if 
for any X ~ ~ ( ~ )  the numerical function F(to)(X) on ~ is measurable. 

2The term "effect" was apparently introduced by Ludwig (1954) in his operational approach 
to quantum mechanics. We borrow this term to stress that fuzzy probability theory is founded 
on some general ideas of this approach, although we do not use here its typical formalism of 
ordered Banach spaces. 
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This completion of the definition of random variable makes also more 
regular the function K r introduced by formula (2). With the condition of 
measurability of effects of the random variable F, K F becomes a (Markov) 
kernel from (D~ ~(12)) to = (,,, ~(~-)) as defined in the standard theory of 
stochastic processes; see, for instance, Bauer (1981). 

Notice by the way that formula (3) extends any random variable F: 12 
M~(__,) to the affine function At: Mi~(~) ~ M~-(-=). On the other hand, 

some affine functions from Mi~(O) to M~-(__,) define, by restriction to the 
set of Dirac measures on 1~, fuzzy random variables on 12. Measure-valued 
affine functions on convex sets are natural representants of physical observ- 
ables (see Bell, 1964). 

Coming back to effects, consider a standard random variable F: f l  --~ 
Mp(E). As F(to) is a Dirac measure for every to, the corresponding kernel 
Kr: l'l x ~ ( E )  --~ [0, I] assumes only two values, 0 and 1. Hence any effect 
EF(X) of F is a 2-valued function on 1~ too. The measurability of effects 
implies that these functions are characteristic functions of measurable subsets 
of Ut. This is a manifestation of the sharp (or categorical) nature of the 
standard random variable. If we now take F to be a general random variable, 
we come to see its effects EF(X) as membership functions of fuzzy subsets 
of 12, with the values of the membership functions being naturally probabili- 
ties. This fuzziness is a characteristic property of the general notion of 
random variable and explains the name of the generalized probability theory 
we propose. 

A random variable F: g~ ---) Mp(- =) attaches, via the kernel K F : 1~ × 
~ ( ~ )  ----) [0, 1 ] determined by it, an appropriate effect Er(X) to any measurable 
subset of ~. It can be demonstrated that the map E r of ~ ( ~ )  into effects is 
an effect-valued measure on --,, the typical construction of the mentioned 
operational quantum mechanics (see an up-to-date and thorough monograph 
of Busch, Grabowski, and Lahti, 1995). The effect-valued measure E F, called 
the semispectral resolution of the random variable F, provides an alternative 
way of representing random variables. Any random variable can be so decom- 
posed into effects and constructed out of them: effects are elementary constit- 
uents of random variables. 

The subsets belonging to ~ ( ~ )  are traditionally called events, we can 
say (with a slight abuse of language) that the random variables appearing in 
the standard probability theory can be represented as event-valued measures 
on their outcome-spaces. Hence our effects are to be seen as generalizing 
the standard notion of event, and we can call them general (or fuzzy) events. 

Let us summarize the above remarks: The basic structure of the fuzzy 
probability theory consists of a measurable space (ll ,  ~(~)) ,  the space of 
elementary events, together with the set ~ ( ~ )  of all (generalized, fuzzy) 
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random variables on it. Any random variable F: lq ~ Mt,(~ ) defines the 
affine map AF" Mp(~) ---) Alp(=_), and decomposes into effects (fuzzy events). 

4. FU ZZY P R O B A B I L I T Y  T H E O R Y  G E N E R A T E S  Q U A N T U M  
M E C H A N I C S  

Now it is rather apparent that the standard probability theory can be 
obtained from the fuzzy probability theory if only we forsake the nonstandard 
random variables and focus our attention on the sharp ones. It is less trivial 
that quantal theories emerge from the fuzzy probability theory in a similar way. 

The procedure of obtaining the basic structure of the classical probability 
theory from the fuzzy one does not influence the basic convex set Mp(~). It 
is not so in a general case. If we have (or prefer) to restrict ourself to a 
narrower set, say ~q(~) ,  of random variables on l-l, ~q(l))  C ~(lq),  it can 
happen that we lose the ability of  discriminating between measures on ~.3 
Assuming that ~q(l))  indeed does not separate elements of M~-(~), we get 
the equivalence relation on M~(l)) :  

= ~2 iff ft~ EF(X) p~l(dto) = In EF(X) ~2(dto) IXl 

for all F e ~q(l))  and all X ~ ~(_~), where _~ is the outcome space of F. 
In concise form it reads 

~1, l ~ [I-L 2 i f f  A F ~  1 = AFI.I~ 2 (4) 

for all F e ~q(O). Thus two measures are equivalent in this meaning if they 
are seen as identical by all random variables in which we are interested. The 
factor set M~{(O)/"=- (i.e., the family of all equivalence classes under ~-) 
inherits the convex structure from M ~-(~); nevertheless it does not have to 
be a simplex any more. We will show below that in this manner we can 
generate (from an appropriate ~ )  the convex set of  states typical for quan- 
tum mechanics. 

It is interesting to see what happens to random variables on 12 when 
the simplex M ~(I)) is transformed into M i ~ (~)/--~. Consider the natural projec- 
tion (called the reduction map) 

R: M~(f'l) --> M~{(O)/= 

which to any measure on f~ attaches the z-equivalence class to which it 
belongs. A remarkable property of the reduction map R appears when the 
distinguished set ~q(f~) of random variables discriminates between all points 

3The formal notion of coarsening (Busch and Quadt, 1993) gives a correct account of this effect. 
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of f~, which seems actually to be the most interesting case. Assuming this 
separability property of ~q(t'l), we find that the reduction map R embeds the 
set 3(f~) := {~o~lto e l-l} of all Dirac measures on Mi~(l'~) into the set 
a(M~-(fl)/----) of extreme points of the factor set in a 1-to-I way. 

Owing to this, any random variable F • ~ ( l l )  can be literally transported 
to the extreme boundary of Mp(~)/~--, which defines a measure-valued func- 
tion on (a subset of) O(M i~(O)/=). In spite of the formal analogy, this function 
cannot be in general regarded as a counterpart of the original random variable 
F. The reason is that, even if it could be extended over O(M((f~)/=), the 
factor set M ~-(ll)/----- is not a simplex; hence the problem of the affine extension 
of functions defined on its extreme boundary [the Dirichlet problem; see 
Alfsen (1971)] becomes highly nontrivial. 

The distinguished random variables are well behaved in this respect. It 
is evident that the affine map AF determined by any F • ,~q(fl) identifies 
measures belonging to the same equivalence class. Hence AF with F • ~q(l-l) 
factorizes into the composition of the reduction map R and an affine map, 
say Aq,F, of the factor set M~-(fl)/'=-- into M~(--,), 

AF = Aq.F ° R: M~(~)  -~ M~(I~)/~ a-2-> F M'~(~) 

The map Aq, F is the unique affine extension of  F e ~q(~"~) over the factor 
set M ~-(1~)/~. 

Taking into account that, as was mentioned above, measure-valued affine 
functions on a convex set (of states) provide the natural tool for describing 
physical observables, we see that the distinguished random variables of ~q(fl) 
can be regarded as "observables" of the "physical model" based on the convex 
set M ~ ( ~ ) / = .  Thus if the set M~-(~)/~-- resulting from the above reduction 
procedure appears to be the set of states of a quantum mechanical model, 
then the random variables which determine this reduction procedure are to 
be identified as quantum observables. 

All this will be illustrated by two simple examples. The first comes 
from Holevo (1982). 

Example 1. Let [ l  = {to', to", to", to 'v} be a four-point set. The set 
M~-(I~) can be visualized then as a tetrahedron with vertices corresponding 
to the elements of ~ .  Assume that we are interested only in random variables 
which satisfy the condition: 

F(to') + F(to") = F(to") + F(to'") (5) 

where the sum of measures is understood in the usual way; for instance, 
F(to') + F(to") is the measure defined by (F(to') + F(to'))(X) = F(to')(X) 
+ F(to")(X) for any measurable subset X of the outcome space of F. The set 
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of all such random variables, denoted ~q(ll),  will be the starting point of 
the reduction procedure. 

It is evident that ~q(l-l) does not separate elements of M~-(fl), which 
leads to the equivalence relation = on the tetrahedron described above. It is 
easy to find that in the considered case M~((I-I)/~- bears the shape of a square. 
The distinguished set ~q([l) separates points of l'l; hence the random variables 
satisfying condition (5) can be regarded as "observables" on the square- 
shaped "set of states." The obtained structure, consisting of  the convex set 
M~( f l ) /=  and the set of affine maps {Aq,FI F E ~:q(~)}, indeed resembles 
(to some extent of course) the basic structure of a quantum mechanical model, 
and is known as the Davies example (Davies, 1972). A more realistic situation 
of this kind is described by the next example, which essentially comes from 
Neumann (1985). 

Example 2. Let f l  denote the set of points of the unit sphere in R 3 

equipped with the natural measurable structure. Among all possible random 
variables on f l  we distinguish the set ~q(ll) = {Fo, lco ~ fl}, where 

F~: l l - ~ M i  ~ - 7 , +  , F , , (~ )  _+ : = 7 ( 1  ___r,~.r,,,) 

with r~ the unit vector of R 3 pointing to co e f t ,  etc. Following the reduction 
procedure, we define the equivalence relation ~ on M~-(~) according to 
formula (4). It can be easily demonstrated that the resulting factor set 
M~(f~)l= is, as a convex set, identical with the unit ball of R 3. As the 
reduction map has the l-to-1 property on the extreme points, we can identify 
~ with the surface of the ball M~(ll)I~--. 

It is easy to guess that the obtained structure has a direct connection to 
the quantum mechanical description of  spin-ll2 objects. Indeed, it is well 
known that the set of all statistical operators on the two-dimensional Hilbert 
space C 2 is affinely isomorphic to the unit ball of R 3 (e.g., Beltrametti and 
Cassinelli, 1981). The affine map Aq,Fo: M'~(I-I)[= ~ M~-({- l /2 ,  +1/2}) 
generated by fo, ~ ~q(l-l) defines then uniquely the Hermitian matrix Ao, = 
½(r~crl + r~2cr2 + r,~3~r3) which represents the projection of spin on the 
direction of  r,o = (r~l, ro~2, r,o,3). 

Both examples show that one can, by means of the reduction procedure, 
extract from fuzzy probability theory some quasiprobabilistic structures con- 
sisting of a convex set and of a family of measure-valued affine maps on 
this convex set. They cannot be in general regarded as models of any probabil- 
ity theory, because the nonsimplicial shape of the convex sets in question 
excludes their representation as Mp(fl') for a measurable space f l ' .  4 

~Nevertheless, under some technical conditions nonsimplectic convex sets can be affinely 
embedded into simplexes (Singer and Stulpe, 1992; Busch et al., 1993; Bugajski, 1993). 
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However, such nonsimplicial convex sets of states are typical for quan- 
tum mechanical models. The second example shows that a particular set of 
this kind can be obtained as the result of a reduction of some particular model 
of fuzzy probability theory. It should be stressed that this is not an exceptional 
case: any model provided by standard (i.e., founded on a separable complex 
Hilbert space ~ )  quantum mechanics can be obtained as the result of reduction 
of an appropriate model belonging to fuzzy probability theory (Beltrametti 
and Bugajski, 1995). Consequently quantum mechanics can be regarded as 
a particular subtheory of fuzzy probability theory. 

This result, which in view of the preceding remarks is perhaps not very 
surprising, becomes comprehensible if we notice the natural conversion of 
quantum observables into (generalized) random variables described in Section 
2 around formula (1). All random variables on II~e generated in the way 
described there by quantum mechanical observables have to be collected into 
the set ~q(fl~) C ~(l-l~) and then taken as the basis of the reduction procedure 
of the fuzzy-probability model based on II~e. Then it seems natural to expect 
that the reduction procedure will exactly recover the original quantum 
mechanical model we started with. The reduction map RM: Mi~(fl~) ---> 
M~(gI~)/= for the equivalence relation ----- defined by the set ~q(l'l~) of all 
standard quantum mechanical observables was first constructed by Misra 
(1974) and then rediscovered by Ghirardi et al. (1976) and Holevo (1982). 
Beltrametti and Bugajski (1995) generalize this result and discuss some of 
its physical aspects. The fuzzy probability model based on gl~ is called there 
the canonical classical extension of the corresponding model of standard 
quantum mechanics. 

Obviously, the basic probabilistic structure of classical statistical 
mechanics (which is in fact the same as the basic structure of standard 
probability theory) can be also obtained from an appropriate fuzzy model. 
Thus we conclude by noticing that fuzzy probability theory provides a univer- 
sal probabilistic framework for classical statistical mechanics as well as for 
standard quantum mechanics. 

5. JOINT RANDOM VARIABLES 

Once we introduce the general concept of random variable and get some 
acquaintance with its peculiarities and advantages, we can begin developing 
fuzzy probability theory following the lines of the standard theory. Even a few 
steps in this direction offer unexpected discoveries, they can be exemplified by 
a closer examination of properties of joint random variables. 

The standard notion of a joint random variable is tailored to standard 
random variables and does not admit a direct generalization toward general 
random variables. However, observables of quantum mechanics, as we have 
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seen, are nothing but fuzzy random variables hidden from view by the machin- 
ery of functional analysis, so we can look there for some hints. Indeed, the 
intensively studied and vividly debated concept of comeasurability of quan- 
tum observables, especially in its general form provided recently by Beltra- 
metti and Bugajski (1995), remains meaningful in the framework of fuzzy 

+ , ~  
probability theory. Thus, given two random variables F~: 12 ~ MI ( - 0 ,  F2: 
l-I --~ M~-(E2), we will say that a random variable J(Fl, F2): 1"~ --~ Mp('~l X 
E2) is their joint random variable (so that Fl and F2 are comeasurable) if 

Fi(to) = "rri(J(Fi, Fz)(to)), i = 1, 2 (6) 

raM1 (=1X =2). for any to ~ f~, where 'rr~ and 'rr: are the marginal projections' + - - 
It can be seen (Beltrametti and Bugajski, 1995) that, according to what 

we would expect, any two random variables of fuzzy probability theory 
possess a joint random variable, i.e., are comeasurable. This natural result 
entails a surprising conclusion: fuzzy probability theory provides joint random 
variables for any pair of quantum mechanical observables. This observation 
sheds new light on the phenomenon of noncomeasurability of quantum 
mechanical observables, which appears now to be merely a by-product of 
the traditional Hilbert space-based formalism instead an occurrence of the 
mysterious nature of the microworld. A noncommuting pair of quantum 
observables seems to have no joint observable simply because the standard 
formalism is not able to provide it, while a joint random variable for such a 
pair does in any case exist in the extended framework of fuzzy probability 
theory (see Example 3 below). 

What makes the notion of joint random variable nontrivial and even 
intriguing is the fact that in general there are many joint random variables 
for a given pair of (generalized) random variables. The nonuniqueness of 
joint random variables is in fact a natural consequence of the evident non- 
uniqueness of joint measures. 

+ 
Let us recall that a joint measure of two measures I~ E M~ ( = 0  and 

1.1,2 (~ M~-(~2)  is a measure, say J(lxl, Ix2), such that J(l~, l~z) m M~(~u x 
~2), and 

bl,i = "rriJ([l,l, 1~,2), i = 1,2 

The set of all joint measures for lx~, i~2 will be denoted ~(l.Z~, 1~2); it contains 
only one measure if and only if one of ~l, 1~2 (or both) is a Dirac measure. 

Take then two random variables FI: 12 --4 M~(~,I), F2:12 --> M~(E2). 
To any point to E 12 there corresponds now the set ~(Fl(to), F2(to)) of joint 
measures for F~(to) and Fz(to). Attaching to elementary events to various 
elements of the corresponding family ~(Fl(to), F2(to)), we obtain plenty of 
functions on 12 which take values in M p ( ~  1 X -~2) and satisfy (6). A unique 
result occurs only if one of the random variables fl, f2 (or both) is standard. 
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Finally, we have to prove that some of the obtained measure-valued functions 
are really random variables, i.e., satisfy the measurability condition for effects. 
In this way we come to the view that the nonuniqueness of joint random 
variables is as natural and obvious as the nonuniqueness of joint probabil- 
ity measures. 

This of course does not explain the nature of this effect. One can speculate 
about various ways of coupling together two given random variables or about 
a mutual disturbance of one by the other; however, an acceptable interpretation 
should arise naturally as a result of inspecting practical instances of occurrence 
of the nonuniqueness phenomenon. 5 

The following example, which comes essentially from Beltrametti and 
Bugajski (1995), shows the nonuniqueness of joint random variable and 
provides joint random variables for a pair of uncomeasurable quantum 
mechanical observables. 

Example 3. Let us come back to the second example of Section 4. Take 
two particular random variables F,,~, F~o2 on the sphere f~; they are generated 
by the quantum observables of spin projection on the directions of ro,~, 
r~, 2, respectively. In the framework of standard quantum mechanics the corres- 
ponding quantum observables do not have any joint observable (except the 
case ro~ = - r ~ 2 ) ,  while the fuzzy probability model constructed over 12 [the 
canonical classical extension of the quantum model of spin 1/2 according to 
Beltrametti and Bugajski (1995)] provides many joint random variables for 
them. Following the above consideration we start by examining the set 
)(F~,l(to),F, o2(to)) of all joint measures for the two measures 
Fo, l(to), Fo,2(to), to arbitrarily fixed. Any joint measure J(F, ol(to), Fo,2(to)) E 
off(F, ol(to), F, o2(to)) should have the form 

J(F~o,(tu), F~2(to))(+ ~, +½) = h(to) 

J(F~(to), F~2(to))(+ ½, -~ )  = ½(1 + r~ - r~ )  - Mto) 

J(Fo~,(to), F~2(to))(- ½, +½) = ½(1 + r~2-r~) - Mto) 

J(Fo~,(to), Fo,2(to))(-½, -½) = h(to) - I ~(r~,, + r~2)'ro, 

where h(to) is an arbitrary real number satisfying the natural conditions 
imposed by the fact that J(F~o~(to), F~,2(to)) is a probability measure. If we 
let to vary over f~, then any particular choice of the function h(to) would 

5The nonuniqueness of joint random variables can be actually observed in the framework of 
operational quantum mechanics. Indeed, it is easy to see that the nonuniqueness of the joint 
effect for a pair of compatible effects [noticed years ago by Ludwig (1954), p, 89 of the 
English translation] entails the nonuniqueness of joint observables for a pair of comeasurable 
operational quantum observables. See Busch et al. (1995) for examples. 
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lead to a joint random variable for fo,~,fo~2. There are many appropriate 
functions h(to); two of them are, for instance, 

k'(to) =¼(1 + ro, t.r~)(1 + r~2.r,o) 

h"(to) = min{½(1 + r~o~-r~),½(1 + r,~2"r,~)} 

The nonuniqueness of joint random variables in fuzzy probability theory 
implies an interesting consequence, called the Bell phenomenon (Beltrametti 
and Bugajski, 1996). We discuss it in the next section. 

6. IS FUZZY PROBABILITY THEORY REALLY NECESSARY? 

The above motivation for promoting fuzzy probability theory comes 
mainly from physics, especially from quantum mechanics. One could agree 
that the new probability theory is a natural consequence of quantum physics, 
that it provides a unified and universal background for physical statistical 
theories, even that it correctly mirrors some peculiarities of the microworld 
as well as some irrational aspects of psychological or sociological phenomena. 
Nevertheless one question has to be answered: is it really impossible to get 
all that from standard probability theory? In fact this is a form of the old 
problem of "hidden variables" that has haunted quantum mechanics almost 
since its beginnings. 

The most essential difference between standard and fuzzy probability 
theories lies in the notion of random variable they adopt. The most essential 
difference between standard and general (fuzzy) random variables is that the 
latter attach nontrivial measures to some elementary events, contrary to the 
former, which attach to elementary events Dirac measures only. 

Quantum mechanics provides many examples of situations which should 
be modeled by attaching to an elementary event (i.e., to a pure state) a 
nontrivial probability measure on an outcome space. It seems that similar 
situations can occur in other fields closer to everyday experience. The simplest 
case is if one asks somebody a question which admits only two answers, yes 
or no, but the person being examined cannot decide which option to choose. 
The most reasonable description of this "unreasonable" behavior is provided 
by a probability measure equally distributed over the two possible answers. 6 
In such situations fuzzy random variables come into play. Standard probability 
theory does not admit fuzzy random variables, so it has to offer alternative 
ways of description. 

6"To assign equal probabilities to two events is not in any way an assertion that they must 
occur equally often in any ' random experiment ' ,  as Jeffreys emphasized, it is only a formal 
way of saying 'I don ' t  k n o w ' "  (Jaynes, 1985). 
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Assume that we are rather disposed to attach a probability measure p~ 
M~(R I) to an elementary event too ~ ~ .  If nevertheless we want to stay 

inside the framework of standard probability theory, we could attach to tOo 
the expectation value Explx of Ix instead of ~ itself. In some cases this looks 
plausible: if, for instance, one is polling a group of people, one can ascribe 
to those undecided a third value, say 1/2, intermediate between 1 (yes) and 
0 (no) of the random variable representing the question asked. This makeshift 
is of limited use. If, for example, we want to consider correlations of two 
random variables, say F~ and F2, which attach to too nontrivial probability 
measures Fl(to0) and F2(to0), then the standard substitutes ExpFl(too) and 
ExpF2(too) for Fl(tO0) and F2(tO0) are completely useless. 

A more promising alternative arises from the observation that standard 
random variables are able to generate nontrivial distributions at nonextreme 
elements of M~-(~). If F: ~ --~ Mi~(~) is a standard random variable (hence 
attaches only Dirac measures to points of ~) ,  then its affine extension At: 

+ M~-(~) --~ Mj (=)  [see Section 3, formula (3)] attaches in general nontrivial 
measures to those elements of Mp(~) which are placed outside the extreme 
boundary OMp(O). Following this line we could conjecture that the elementary 
event tOo to which we want to attach the probability measure Ix is "in fact" 
not elementary, but rather should be represented by a probability measure 
over a broader "hidden" measurable space, This is exactly the quantum 
mechanical idea of  hidden variables. 

The idea of attaching a more subtle structure to elementary events can 
be formalized in general terms of the phase-space representations of statistical 
theories 7 (Singer and Stulpe, 1992; Busch et al., 1993). Some shortcomings 
of this approach are pointed out in Bugajski (1993); a decisive argument is 
in fact the one raised by Bell (1964), who demonstrated on a simple example 
from the quantum theory of  spin-1/2 systems that standard probability theory 
could never reproduce some properties of quantum observables. Having in 
mind the close connection between quantum mechanics and fuzzy probability 
theory, we guess that the Bell argument also solves the main question of this 
section in favor of fuzzy probability theory. 

Detailed considerations of the Bell phenomenon can be found in Beltra- 
metti and Bugajski (1996); here we illustrate it by an example, which is not 
devoid of  some quantum mechanical background: a similar situation can be 
observed when analyzing the original Bell argument. 

Example 4. Let ~ be an arbitrary space of elementary events; consider 
a fixed point too E f~ and a family of random variables {Fi, F2, F3, J(Ft, 

7The basic scheme of the phase-space representations was established by Prugove~ki (Ali 
and Prugove~ki, 1977; Prugoverki, 1986), but the idea can be traced back to the known 
Wigner distributions. 
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F2), J(F2, F3), J(Fi, F3)} on ~ .  We assume that the outcome spaces of Fl, 
F2, F3 are two-point spaces =-i = {~[, ~'} and that 

Fi(too) = 1 ~  + 1~,,, i = I, 2, 3 

Choose now the joint random variables in such a way that 

J(FI, F2)(too) = i , , t .... 

J(F2, F3)(too) = i , , i .... 

j(FI ' F3)(too) = I , ,, I ,, , 

so the measures generated at too by J(F1, F2) and J(F2, ~ )  show a strong 
correlation, while the measure J(F3, F3)(too) shows a strong anticorrelation 
of the corresponding marginal measures. Notice that the fuzzy probability 
theory can provide random variables having the prescribed properties. 

It is easy to realize that there is no probability measure on the eight- 
point set =-t × ='2 × =-3 which would return the above three measures J(F~, 
F2)(too), J(F2, F3)(too), J(Fl, F3)(too) as its marginals. Indeed, if such a global 
joint measure did exist, then, for instance, the two measures J(F~, Fz)(too) 

I , , I . . . .  and J(F2, F3)(too) would force the third one to be ~B(¢~,¢3 ) + ~(~,~3) instead 
of ~B(~.~3 ) + ~B(~.¢3 ). The nonexistence of a measure which would generate 
the above measures by means of marginalizations is exactly what is called 
the Bell phenomenon in Beltrametti and Bugajski (1996). 

Such a situation cannot occur in standard probability theory. It is obvious 
that substituting the original variables FI, F2, F3 by their mean values does 
not help much, because standard random variables would generate at too 
nothing but Dirac measures, which cannot produce nontrivial joint 
distributions. 

The idea of extending the original space of  elementary events is of no 
use either. Indeed, assume that we have, in place of  too, a nontrivial measure, 
say I~0, on the new space ~ of "hidden" elementary events. The original 
random variables FI, F2, F3 should be now extended over l ) ,  which is by 
no means automatic (Bugajski, 1993). If we succeed in constructing correct 
standard representants over ~ ,  say/Z" 1,/~, F3, for the original random vari- 
ables, then their unique joint random variable J(/e l, F2, F3) would generate 
at P~0 the joint measure on the eight-point space =-l × =-2 X -3,  =' which 
inevitably returns the unique joint distributions for pairs of the random vari- 
ables in question; see the detailed discussion in Beltrametti and Bugajski 
(1996). 

The Bell phenomenon shows that there occur situations which are not 
describable in terms of standard probability theory; the experimental confir- 
mations of this phenomenon (Aspect, 1976; Aspect et al., 1981, 1982) indicate 
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that the nature itself favors fuzzy probability theory. Notice also that the 
example above demonstrates the occurrences of the Bell phenomenon are 
not specific for the particular Hilbert space-based framework of quantum 
mechanics, but result rather from the fuzziness of the involved random vari- 
ables (Beltrametti and Bugajski, 1996). This observation encourages the 
search for occurrences of the Bell phenomenon outside physics, especially 
in the social sciences, where some deviations from the rules of rationality 
are likely to appear. 

7. REVOLUTION OR CONTINUATION? 

Fuzzy probability theory, although it repudiates some of the basic rules 
of standard probability theory, should be seen as a natural and smooth exten- 
sion of the latter rather than its radical negation. As I have stressed above, 
the basic structure of the standard theory is still present inside the fuzzy 
framework; in particular, standard random variables can be seen as a special 
class of general random variables. It is natural to conjecture that all notions 
and results of standard probability theory would be carefully preserved by 
the fuzzy theory, which possibly would extend them and provide them with 
a new interpretation. 

Moreover, fuzzy probability theory introduces a new kind of consistency 
into the standard framework. As mentioned above, our general random vari- 
ables can be found in the standard theory of stochastic processes in the form 
of Markov kernels. It appears also that random strategies of the standard theory 
of statistical decisions (for instance, Neveu, 1965) are formally identical to 
our random variables. The appearance of general random variables at various 
points of the standard probabilistic landscape signals some inherent tension, 
which perhaps is caused by a tendency to go beyond the limitations of the 
standard concept of a random variable. This seems to suggest that fuzzy 
probability theory could help in formulating a new consistent framework 
connecting various theories deriving from standard probability theory. 
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